23 research outputs found

    A Fog Computing Approach for Cognitive, Reliable and Trusted Distributed Systems

    Get PDF
    In the Internet of Things era, a big volume of data is generated/gathered every second from billions of connected devices. The current network paradigm, which relies on centralised data centres (a.k.a. Cloud computing), becomes an impractical solution for IoT data storing and processing due to the long distance between the data source (e.g., sensors) and designated data centres. It worth noting that the long distance in this context refers to the physical path and time interval of when data is generated and when it get processed. To explain more, by the time the data reaches a far data centre, the importance of the data can be depreciated. Therefore, the network topologies have evolved to permit data processing and storage at the edge of the network, introducing what so-called fog Computing. The later will obviously lead to improvements in quality of service via processing and responding quickly and efficiently to varieties of data processing requests. Although fog computing is recognized as a promising computing paradigm, it suffers from challenging issues that involve: i) concrete adoption and management of fogs for decentralized data processing. ii) resources allocation in both cloud and fog layers. iii) having a sustainable performance since fog have a limited capacity in comparison with cloud. iv) having a secure and trusted networking environment for fogs to share resources and exchange data securely and efficiently. Hence, the thesis focus is on having a stable performance for fog nodes by enhancing resources management and allocation, along with safety procedures, to aid the IoT-services delivery and cloud computing in the ever growing industry of smart things. The main aspects related to the performance stability of fog computing involves the development of cognitive fog nodes that aim at provide fast and reliable services, efficient resources managements, and trusted networking, and hence ensure the best Quality of Experience, Quality of Service and Quality of Protection to end-users. Therefore the contribution of this thesis in brief is a novel Fog Resource manAgeMEnt Scheme (FRAMES) which has been proposed to crystallise fog distribution and resource management with an appropriate service's loads distribution and allocation based on the Fog-2-Fog coordination. Also, a novel COMputIng Trust manageMENT (COMITMENT) which is a software-based approach that is responsible for providing a secure and trusted environment for fog nodes to share their resources and exchange data packets. Both FRAMES and COMITMENT are encapsulated in the proposed Cognitive Fog (CF) computing which aims at making fog able to not only act on the data but also interpret the gathered data in a way that mimics the process of cognition in the human mind. Hence, FRAMES provide CF with elastic resource managements for load balancing and resolving congestion, while the COMITMENT employ trust and recommendations models to avoid malicious fog nodes in the Fog-2-Fog coordination environment. The proposed algorithms for FRAMES and COMITMENT have outperformed the competitive benchmark algorithms, namely Random Walks Offloading (RWO) and Nearest Fog Offloading (NFO) in the experiments to verify the validity and performance. The experiments were conducted on the performance (in terms of latency), load balancing among fog nodes and fogs trustworthiness along with detecting malicious events and attacks in the Fog-2-Fog environment. The performance of the proposed FRAMES's offloading algorithms has the lowest run-time (i.e., latency) against the benchmark algorithms (RWO and NFO) for processing equal-number of packets. Also, COMITMENT's algorithms were able to detect the collaboration requests whether they are secure, malicious or anonymous. The proposed work shows potential in achieving a sustainable fog networking paradigm and highlights significant benefits of fog computing in the computing ecosystem

    Improving Fog Computing Performance via Fog-2-Fog Collaboration

    Get PDF
    In the Internet of Things (IoT) era, a large volume of data is continuously emitted from a plethora of connected devices. The current network paradigm, which relies on centralized data centers (aka Cloudcomputing), has become inefficient to respond to IoT latency concern. To address this concern, fog computing allows data processing and storage \close" to IoT devices. However, fog is still not efficient due to spatial and temporal distribution of these devices, which leads to fog nodes' unbalanced loads. This paper proposes a new Fog-2-Fog (F2F) collaboration model that promotes offloading incoming requests among fog nodes, according to their load and processing capabilities, via a novel load balancing known as Fog Resource manAgeMEnt Scheme (FRAMES). A formal mathematical model of F2F and FRAMES has been fomulated, and a set of experiments has been carried out demonstrating the technical doability of F2F collaboration. The performance of the proposed fog load balancing model is compared to other load balancing models

    Optimizing Project Delivery through Augmented Reality and Agile Methodologies

    Get PDF
    The construction sector, which has a long history to use visualisation to envisage proposed designs and project delivery, is beginning to see the benefits of augmented reality and agile project management methodologies. This study investigated the benefits of augmented reality and agile project management methodologies. Convergent design method was considered valuable and the most straightforward for this study, as different types of quantitative and qualitative data were required to be collected and analysed. The participants drawn from the construction sector revealed a number of augmented and agile determinants that facilitated the delivery of construction and integration of project teams. The participants suggested that the proposed ARGILE framework increases client understanding of the tasks output, increases client involvement and collaboration with the project team. It was further established that the proposed ARGILE framework enhances project time management, embeds the client and empowers multidisciplinary team, increases collaboration and communication

    Norm-based and Commitment-driven Agentification of the Internet of Things

    Get PDF
    There are no doubts that the Internet-of-Things (IoT) has conquered the ICT industry to the extent that many governments and organizations are already rolling out many anywhere,anytime online services that IoT sustains. However, like any emerging and disruptive technology, multiple obstacles are slowing down IoT practical adoption including the passive nature and privacy invasion of things. This paper examines how to empower things with necessary capabilities that would make them proactive and responsive. This means things can, for instance reach out to collaborative peers, (un)form dynamic communities when necessary, avoid malicious peers, and be “questioned” for their actions. To achieve such empowerment, this paper presents an approach for agentifying things using norms along with commitments that operationalize these norms. Both norms and commitments are specialized into social (i.e., application independent) and business (i.e., application dependent), respectively. Being proactive, things could violate commitments at run-time, which needs to be detected through monitoring. In this paper, thing agentification is illustrated with a case study about missing children and demonstrated with a testbed that uses di_erent IoT-related technologies such as Eclipse Mosquitto broker and Message Queuing Telemetry Transport protocol. Some experiments conducted upon this testbed are also discussed

    Intelligent Control and Security of Fog Resources in Healthcare Systems via a Cognitive Fog Model

    Get PDF
    There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this paper, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN and DT) using a standard security dataset (NSL-KDD)

    Smart Hospital Emergency System Via Mobile-based Requesting Services

    Get PDF
    In recent years, the UK's emergency call and response has shown elements of great strain as of today. The strain on emergency call systems estimated by a 9 million calls (including both landline and mobile) made in 2014 alone. Coupled with an increasing population and cuts in government funding, this has resulted in lower percentages of emergency response vehicles at hand and longer response times. In this paper, we highlight the main challenges of emergency services and overview of previous solutions. In addition, we propose a new system call Smart Hospital Emergency System (SHES). The main aim of SHES is to save lives through improving communications between patient and emergency services. Utilising the latest of technologies and algorithms within SHES is aiming to increase emergency communication throughput, while reducing emergency call systems issues and making the process of emergency response more efficient. Utilising health data held within a personal smartphone, and internal tracked data (GPU, Accelerometer, Gyroscope etc.), SHES aims to process the mentioned data efficiently, and securely, through automatic communications with emergency services, ultimately reducing communication bottlenecks. Live video-streaming through real-time video communication protocols is also a focus of SHES to improve initial communi- cations between emergency services and patients. A prototype of this system has been developed. The system has been evaluated by a preliminary usability, reliability, and communication performance study

    Smart Hospital Emergency System Via Mobile-based Requesting Services

    Get PDF
    In recent years, the UK's emergency call and response has shown elements of great strain as of today. The strain on emergency call systems estimated by a 9 million calls (including both landline and mobile) made in 2014 alone. Coupled with an increasing population and cuts in government funding, this has resulted in lower percentages of emergency response vehicles at hand and longer response times. In this paper, we highlight the main challenges of emergency services and overview of previous solutions. In addition, we propose a new system call Smart Hospital Emergency System (SHES). The main aim of SHES is to save lives through improving communications between patient and emergency services. Utilising the latest of technologies and algorithms within SHES is aiming to increase emergency communication throughput, while reducing emergency call systems issues and making the process of emergency response more efficient. Utilising health data held within a personal smartphone, and internal tracked data (GPU, Accelerometer, Gyroscope etc.), SHES aims to process the mentioned data efficiently, and securely, through automatic communications with emergency services, ultimately reducing communication bottlenecks. Live video-streaming through real-time video communication protocols is also a focus of SHES to improve initial communi- cations between emergency services and patients. A prototype of this system has been developed. The system has been evaluated by a preliminary usability, reliability, and communication performance study

    Weaving Cognition into the Internet-of-Things: Application to Water Leaks

    Get PDF
    Despite the growing interest in the Internet-of-Things, many organizations remain reluctant to integrating things into their business processes. Different reasons justify this reluctance including things’ limited capabilities to act upon the cyber-physical environment in which they operate. To address this specific limitation, this paper examines thing empowerment with cognitive capabilities that would make them for instance, selective of the forthcoming business processes in which they would participate. The selection is based on things’ restrictions like limitedness and goals to achieve like improved reputation. For demonstration and implementation purposes, water leaks are used as a case study. A BPEL-based business process driving the fixing of water leaks is implemented involving different cognitive-empowered things like moisture sensor

    COMITMENT: A Fog Computing Trust Management Approach

    Get PDF
    As an extension of cloud computing, fog computing is considered to be relatively more secure than cloud computing due to data being transiently maintained and analyzed on local fog nodes closer to data sources. However, there exist several security and privacy concerns when fog nodes collaborate and share data to execute certain tasks. For example, offloading data to a malicious fog node can results into an unauthorized collection or manipulation of users’ private data. Cryptographic-based techniques can prevent external attacks, but are not useful when fog nodes are already authenticated and part of a networks using legitimate identities. We therefore resort to trust to identify and isolate malicious fog nodes and mitigate security, respectively. In this paper, we present a fog COMputIng Trust manageMENT (COMITMENT) approach that uses quality of service and quality of protection history measures from previous direct and indirect fog node interactions for assessing and managing the trust level of the nodes within the fog computing environment. Using COMITMENT approach, we were able to reduce/identify the malicious attacks/interactions among fog nodes by approximately 66%, while reducing the service response time by approximately 15s
    corecore